Deep Dynamic Poisson Factorization Model
نویسندگان
چکیده
A new model, named as deep dynamic poisson factorization model, is proposed in this paper for analyzing sequential count vectors. The model based on the Poisson Factor Analysis method captures dependence among time steps by neural networks, representing the implicit distributions. Local complicated relationship is obtained from local implicit distribution, and deep latent structure is exploited to get the long-time dependence. Variational inference on latent variables and gradient descent based on the loss functions derived from variational distribution is performed in our inference. Synthetic datasets and real-world datasets are applied to the proposed model and our results show good predicting and fitting performance with interpretable latent structure.
منابع مشابه
Dynamic Collaborative Filtering With Compound Poisson Factorization
Model-based collaborative filtering (CF) analyzes user–item interactions to infer latent factors that represent user preferences and item characteristics in order to predict future interactions. Most CF approaches assume that these latent factors are static; however, in most CF data, user preferences and item perceptions drift over time. Here, we propose a new conjugate and numerically stable d...
متن کاملDeep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem
Newsroom in online ecosystem is difficult to untangle. With prevalence of social media, interactions between journalists and individuals become visible, but lack of understanding to inner processing of information feedback loop in public sphere leave most journalists baffled. Can we provide an organized view to characterize journalist behaviors on individual level to know better of the ecosyste...
متن کاملDeep Poisson Factorization Machines: factor analysis for mapping behaviors in journalist ecosystem
Newsroom in online ecosystem is difficult to untangle. With prevalence of social media, interactions between journalists and individuals become visible, but lack of understanding to inner processing of information feedback loop in public sphere leave most journalists baffled. Can we provide an organized view to characterize journalist behaviors on individual level to know better of the ecosyste...
متن کاملInferring Polyadic Events With Poisson Tensor Factorization
We present a Bayesian factorization model for discovering dynamic communities of actors in a social network and for describing action types associated with those communities. The structure of a social network is often hidden in the interactions among its actors. Typically, we observe interactions between pairs of actors (i.e., an edge) and our goal is to uncover their more complex relationships...
متن کاملHierarchical Compound Poisson Factorization
Non-negative matrix factorization models based on a hierarchical Gamma-Poisson structure capture user and item behavior effectively in extremely sparse data sets, making them the ideal choice for collaborative filtering applications. Hierarchical Poisson factorization (HPF) in particular has proved successful for scalable recommendation systems with extreme sparsity. HPF, however, suffers from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017